Low Temperature Single Crystal Reflection Spectra of Forsterite
H. Suto, H. Sogawa, T. Tachibana, C. Koike, H. Karoji, A. Tsuchiyama, H. Chiahra, K. Mizutani, J. Akedo, K. Ogiso, T. Fukui, S. Ohara
Monthly Notices of Royal Astronomical Society, 370, 1599-1606, 2006

The dispersion relation at wavenumber $ \omega$% WIDTH=14 HEIGHT=27 is expressed as


$\displaystyle \epsilon$% WIDTH=10 HEIGHT=27 ($\displaystyle \omega$% WIDTH=14 HEIGHT=27 ) = $\displaystyle \epsilon_{{\infty}}^{}$% WIDTH=18 HEIGHT=27 + $\displaystyle \sum_{{j}}^{}$% WIDTH=23 HEIGHT=47 $\displaystyle {\frac{{S_j}}{{(\omega_j^2 - \omega^2 -i \gamma_j \omega)}}}$% WIDTH=105 HEIGHT=48 (1)

where $ \epsilon_{{\infty}}^{}$% WIDTH=18 HEIGHT=27 is the dielectric constant representing the contribution from higher wavenumber, Sj,$ \omega_{j}^{}$% WIDTH=18 HEIGHT=27 ,$ \gamma_{j}^{}$% WIDTH=16 HEIGHT=27 are the oscillator strength, resonant wavenumber, and damping factor, respectively.
Table 1: Forsterite oscillator parameters for temperatures from 295K to 50K. $ \omega_{j}^{}$% WIDTH=18 HEIGHT=27 is in cm-1 and Sj/$ \omega_{j}^{{2}}$% WIDTH=19 HEIGHT=31 , $ \gamma_{j}^{}$% WIDTH=16 HEIGHT=27 /$ \omega_{j}^{}$% WIDTH=18 HEIGHT=27 are non dimensional.

\begin{table*}
\begin{center}
\begin{tabular}{rrrrrrrrrr} \hline
\par
&
...
...97e-02 & 8.77e-04 & & & \ \hline
\par
\end{tabular}
\end{center}
\end{table*}% WIDTH=597 HEIGHT=1062


Text data of table 1.